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INTRODUCTION

The purpose of this work is to review several methods by which a

magnetic field B in space can be represented, with particular

attention to problems of the observed geomagnetic field.Time depen-

dence will be assumed to be negligible and five main classes of repre-

sentation will be described, as follows:

(1) Representation by a vector potential A:

B = V A (1)

This is a general form to which other forms noted here can

always be converted.

(2) Representation by a scalar potential 7

B - V y (2)

This representation is available only in current-free regions and

it is particularly appropriate to the main geomagnetic field, where

the expansion of y in spherical harmonics is of considerable

interest.

(3) Representation by orthogonal vectors, in particular those

related to spherical coordinates

B = vx l r + Vx Vx'2r (3)

This representation is related to spherical vector harmonics;

it has been used in dynamo theory and in a variety of problems.

As will be seen, it is also useful in devising models of the

earth's magnetosphere field.



(4) Representation by Euler potentials

B = V ,xV (4)

This is the only representation which includes explicit infor-

mation about the configuration of magnetic field lines, but its

nonlinear character makes its derivation difficult. In the

earth's magnetic field oL is related to McIllwain's L parameter

which is useful in the study of the motion of trapped particles.

(5) Local representations, in which B is expanded around its

value at some reference point

B = + r VB 0  + rr : V B0 +.. (5)

Such expansions find use in the theory of guiding center

motion and in describing the vicinity of neutral points at

which B vanishes.

The present discussion is not intended to be self-contained: matters

on which recent reviews exist in the general literature will only be

briefly described with references directing the reader to more elaborate

treatments. References will also be given to articles in which various

mathematical tools described here are employed or mentioned, but the

mentioning of such articles does not always imply concurrence with all

conclusions expressed there, nor is the review of the literature meant

to be complete. In some cases review papers are cited mainly in order

that they may provide the reader with a guide to earlier work not

mentioned here.
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(1) THE VECTOR POTENTIAL A

The representation (1) is the most general one and others may be

reduced to it. For instance, (3) leads naturally to

A = rVXY2 r (6)

while (4) gives

A = oL (7)

which is orthogonal to B . The representation (2) also has an equivalent

form (1) and if 7 is expanded in spherical harmonics an equivalent

representation of the form (3) is readily obtained (as will be shown),

allowing (6) to be used. All these choices of A are indeterminate

within the gradient of an arbitrary scalar 1 0  , since the addition

of such a gradient to A does not affect (1) .

The representation (1) is part of the standard treatment found in

practically all texts on classical electrodynamics and will therefore

not be discussed in detail. Its main usefulness, in that form, is that if

the current density j creating the field is everywhere known, A is

readily derived (assuming B to be a vacuum field) by volume integration

A(r) (0/14.JT) j(r-'l dV' (8)

In engineering applications j is often given by the circuit

geometry and A is readily calculated (often, B is directly derived in

such cases from the Biot-Savart formula). In space, on the other hand,

j is generally a derived quantity obtained only after B is given,

often with low accuracy, so that (8) is used relatively infrequently.

One important case in space science where j is given occurs in

regions where it is inferred from the observed fluxes of charged particles
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e.g. Northrop, 1963, eq. 4.1 ; Longmire, 1963 . One such region

occurs in the vicinity of the earth, where trapped particles support

a current density often called (not entirely accurately) the ring current.

The magnetic field in these regions is generally known from independent

observations and its comparison to j forms an interesting check, often

enabling one to deduce which part of an observed particle population

contributes most to the magnetic perturbation. Many analyses of the

ring current obtain B directly from j via the Biot-Savart formula

[e.g. Akasofu and Chapman, 1961 ; Schield, 1969 ] . However, general

formulas for A , derived by (8) for configurations used in calculations

of the effects of a ring current, have been published by Kendall et al.

Another case in which distributions of current density are used

as the source of magnetic fields in space occurs when such distributions

are introduced as the input data of theoretical models. The configuration

of the current in such cases may be selected on physical grounds - e.g.

field-aligned currents [Bonnevier et al., 1970 ; Crooker and Siscoe,

1974 ] or the geomagnetic tail sheet current [Williams and Mead, 1965 -

or else it (or part of it) may be represented by a generally expanded

function of position. The advantage of using j in the latter case is

that this assures the vanishing of V -B , which may have been the

reasoning of Olson [ 1974 ; Olson and Pfitzer, 1974] . Later on in

this review, however, it will be shown that similar properties may be

obtained by 'simpler means. In most such applications, the Biot-Savart

formula is used and B is derived directly.



-6-

(2) THE SCALAR POTENTIAL y

(a) INTRODUCTION

In current-free regions 7 B vanishes and it is possible to

represent B by a scalar potential

B = - V7 (9)

Because V-B = 0 , 7 is harmonic

V2 (10)

and may be expanded in a variety of ways appropriate for harmonic functions.

The properties of harmonic functions and of y in particular are dis-

cussed in most texts of classical electrodynamics and for this reason

the discussion here will be confined to applications relevant to the

geomagnetic field.

(b) SPHERICAL HARMONICS

The "main" geomagnetic field - i.e. that part of the field observed

at or above the earth's surface which is caused by currents in the

earth's interior - accounts for about 99 0/o of the field observed

at ground level and is readily expanded in external spherical

harmonic functions

m=n

y = a T (a/r)n+l Pm() (mcos m + hm sin m\) (11)
n=l m=O gncos + n

where a is the earth's radius and pm are associated Legendre functions.
n

Attention should be given to the factor a outside the summation, inten-

ded to give the coefficients gmn and hm the dimensions of magnetic
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field : as a consequence such coefficients are generally given in units

of gausses or gammas ( one gamma = 1 7 = 10-s gauss ). The form given in

(11), involving real coefficients, is preferred in geomagnetic research

over the one used in mathematical treatments, where the last factor in

each term of (11) is expressed in terms of 4)m exp (im) , with the

summation over m extending from - n to n and the coefficients
( n , m ) being complex conjugates ( a related representation

n n
uses spherical harmonic functions Ym( 6, ) proportional to Pm(0) exp imf )

n n
Properties and details of this expansion are reviewed in many texts

and articles [e.g. Chapman and Bartels, 1940 ; Heppner, 196 ; Kaula ,

1968; Stacey, 1969; Zmuda, 9]7 ]

In using the spherical harmonic expansion of y note should be taken

of the choice of normalization, for several definitions of Legendre

functions, differing by constant factors, are currently employed.

Three main choices of this kind are described by Chapman and Bartels

r 1940] ; in the notation used by them (adopted from Adolf Schmidt)

Legendre functions are denoted P for mathematical normalization,
n,m

pn,m for gaussian normalization and pm for Schmidt normalization. Then
same notation will be used here but it is by no means a general one

and frequently authors denote Legendre functions by Pm regardless of
n

the normalization which they are using.

In the above notation, if L = cose

n
P n() = ((-1)n/2 n n ) dnn/dn (1 - 2)n
n,o

(Legendre polynomials) (12)

P n,m() = (1 l- ) m / 2 dm n, 0 / d m  (15)

pnm() ILn - m): / 123 .. (2n- )] Pnm() (1

[(n - m)! n! 2 n / (2n).:] Pn,m() (14)
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p = P
n n,O

(15)

= 2 (n - m) /(n + m): 1/2 p (m / o)
n n,m

PO . (2n - 1)/ n:] pn,O

(16)

P = f155 ... (2n - 1)/1 (n + m)' (n - m) 1/2

(m / 0)

The coefficients of (11) generally have their indices arrayed in

the same manner as the Legendre functions to which they are attached. In

transforming (11) from one normalization to another, whenever a Legendre

function is multiplied by some factor# the corresponding harmonic coeffi-

cient has to be divided by the same factor, ensuring that 7 does not

vary.

In the literature coefficients of the expansion of 7 are generally

listed for either Schmidt or gaussian normalization: for easy identifi-

cation the convention exists to reverse all coefficient signs for gaussian
0

normalization, so that the axial dipole coefficient g is negative for

Schmidt-normalized potentials but positive for gaussian ones. In Schmidt

normalization the magnitude of terms is roughly of the order of their

contribution to the field: their gradual decrease with growing n reflects

the relative preponderance (near the earth's surface) of the contribution

of low-order harmonics, and for any n they do not vary systematically

with m .

In gaussian normalization the magnitude of terms decreases more

gradually with n and for any n the terms having low m tend to be

larger. In computer applications the derivation of P is, however,n,m
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much simpler than that of pm , because it can be handled by means of an
recursion relation free from any irrational factors, connecting terms

with the same m [Cain et al. , 1967

P (8) = sinO
m,m

P (0) = cos sinm 0 (17)

nlm() = oco p (n + m)(n - m)
P (0) cos9 P +- P
nelm n,m (2n + 1)(2n - 1) n-l,m

The derivatives required for the calculation of B. are best found

by a recursion relation based on the derivatives of the above relations,

starting with

dP m/d = m cos9 sinm-1 0  (18)

Normalizations other than those described also exist: a comparative

list of 8 choices from 18 choices has been compiled by Kaula

1961 ; Table 1] .

(c) GEOMAGNETIC MODELS

Expansions of the form (11) have been used for the geomagnetic field

since the time of Gauss [ 1839 . Typically, model expansions use

harmonics with n ranging up to n , with n between 6 and 10max max
Since the number of independent coefficients in such an expansion is

(n max+ 1)2 - 1 , one often finds authors speaking about models with

48, 65, 80, 99 or 120 coefficients.
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A very comprehensive review of early analyses of the main field has

been compiled by McDonald and Gunst [ 1967] and some early results are

also given by Chapman and Bartels [19401 More recent field models

have been listed by Heppner [1963] (gaussian normalization) and by

Vestine 1960] (Schmidt-normalized) . Cain [1971] reviewed some other

recent work and analyzed problems which arise in connection with

field mapping by satellite. An International Geomagnetic Reference Field

IGRF 1965.0 was derived and published by IAGA Commission 2, Working

Group 4 [D] and contains 80 terms.

Most of these models take into account the slow "secular" variation

of the field by assuming a linear dependence of the coefficients (gm, hm)

of the form

a = aO + A t (19)

where a0  is the value of the coefficient at some initial time ( e.g.

the beginning of 1965 for the IGRF model mentioned before) and t is

in years. Some models - for example that of Cain et al. 196 -7] also

include correction terms proportional to t

(d) CURRENT-FREE MODELS OF TEE MAGTIOPOSPEERE

The expansion (11) consists solely of "internal harmonics" representing

a field which originates inside the earth and vanishes at infinity. If

sources external to the earth were also included their contribution to 7

could be represented by a series of "external harmonics" with positive

powers of r

m=n

7 ' = a (r/a)n Pm() cos m' - Em sin Y] (0)

n=l m=O

Models of this form have been proposed for the magnetospheric field

by Mead [1964] and by Midgeley [1964] . In both cases the earth's



field was approximated by the axial dipole given by go in (11) , which

is orthogonal to the earth-sun line, and the frame of coordinates for

both the dipole component and the expansion (20) is fixed with respect

to the sun and the plane of the ecliptic.

In more complicated models internal and external fields are usually

expressed in different frames of reference, since the internal field alone

co-rotates with the earth. If one neglects all internal harmonics except
0 1 h the model will

for the three dipole coefficients gl, gl and h i the model will

depend (when external conditions are fixed) only on one parameter which

varies in time - the angle between the earth's dipole axis and the

eart-sun line, which varies by about +35 ° around 900 , depending on

the season of the year and the rotation of the earth. For any given

value of this angle such a model is symmetrical about the plane containing

the dipole axis and the earth-sun line and it is conveniently described

in solar geomagnetic coordinates [Olson, 1969 (where the caption of Fig. 1

should be ignored); Russell,1971 Burch and Janetzke,1974 I with the

origin at the earth's center, the x-axis pointing sunward, the x-z plane

containing the dipole axis and the z-axis pointing into the northern

hemisphere.

Current-free models of this kind are not meant to represent exter-

nal fields observed on the earth's surface - indeed, the surface effects

predicted by such models are far too small to account for the observed

daily variation Mead, 1964] . Instead, they are intended to approximate

the large-scale field of the outer magnetosphere. In a qualitative way

they seem to agree with observations - in particular, they display a

sharp boundary on the sunward side, limiting the region of field lines

connected to the earth and corresponding to the observed magnetopause.
-0

The most significant non-dipole coefficients seem to be gl and g2

and further improvement has been obtained [Williams and Mead, 1965

by adding a current sheet across the median plane of the geomagnetic

tail.
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Another simple current-free model approximating the external magneto-

sphere is the image dipole model; here the effects of the external field

are approximated by a dipole parallel to the z-axis but located some

distance sunward from the earth [ Hones, 1963; Taylor and Hones, 1965;

Forbes and Speiser, 1971 This representation, which was inspired by

the theory of the magnetic storm developed by Chapman and Ferraro [C39
has two adjustable parameters - the distance to the "image dipole" and

its magnetic moment, which generally exceeds that of the earth by a

considerable factor. For instance, in the work of Taylor and Hones [ 1965
the image dipole is 28 times stronger than the axial dipole of the

earth (other internal terms are ignored) and is placed 40 earth radii

sunward of the earth, at a point which is outside the "magnetopause"

and thus beyond the region in which the model is valid; the model also

includes a sheet current in the geomagnetic tail region, somewhat

similar to the sheet current introduced by Williams and Mead 12 .

In all models with image dipoles the scalar and vector potentials are

readily found by superimposing the contribution of the two dipoles, and

it is usually best to leave them in this form and not expand y in

spherical harmonics.

(e) CHANGE OF COORDINATES

In general the expansion (11) is given in spherical coordinates with

the origin at the earth's center and the z-axis aligned with the terres-

trial rotation axis. For some applications it is useful to rotate the

z axis so that it coincides with the dipole axis, giving the so-called

"dipole coordinates" Chapman, 196] . If 7 is expanded in dipole

coordinates both g and h vanish and the entire dipole contribution1
is contained in the axial dipole term g °

The use of dipole coordinates is especially advisable when it is

desired to enhance the pieponderance of the axial dipole component over

other harmonic terms. For instance, geomagnetic Euler potentials

(described later) may be obtained by a perturbation calculation in which
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the zero-order term is the contribution of the dipole field; it is then

clearly advantageous to use dipole coordinates which make this term

relatively large and reduce the remaining "perturbation".

Mathematical formulas exist for transforming (11) from geographic to

dipole coordinates and they have the virtue that harmonics of a given

lower index n contribute in the new coordinates only to harmonic terms

with the same n . Thus each group of 2n+1 coefficients corresponding

to a given n transforms independently and (say) a model with 99 coeffi-

cients ( n ! 9 ) will be represented with full accuracy by the same

number of terms in the new coordinates (to be precise, there will only

be 97 independent terms in the new expansion, since gl and h i vanish).
1 1

Formulas for such a transformation have been discussed by James 11969]

and are concisely given by Slater 1960 .

Where high-speed computers are available it is often simpler to

apply a "brute force" transformation as follows. Suppose a 99-term

expansion of 7 is given: one then begins by deriving its value

from the given expansion (in geographical coordinates) at 97 points

scattered over the surface of the earth. Next one transforms the

coordinates of each of the selected points to (spherical) dipole

coordinates in which the z axis is antiparallel to the vector having

cartesian components ( h, ~ gl, g ). In the new coordinates the expan-

sion of y at each of the given points is derived, with the new

expansion coefficients (gm, hm' ) entering as 97 unknown quantities
(two of them vanish and are not counted). This produces 97 equations in

97 unknowns, which are now solved to give the new coefficients. A repeti-

tion based on another set of points is recommended as a check on accuracy

and as a precaution against ill-conditioned sets of equations, but the

resulting set of coefficients is usually accurate enough for normal use.

An example of this method is given by Stern [1971] who included in the

transformation not only the time derivatives of (19) but also the slow

secular variation of the new coordinate axes..
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If the origin of the coordinates is also allowed to vary we obtain

eccentric dipole (or "offset dipole") coordinates. The choice of an

arbitrary origin introduces 3 more adjustable parameters and can be

used, for instance, to assure the vanishing not only of g and h

0 1 

1nd

but of g2 , g and h2  as well Bartels, 1936; Chapman and Bartels,

1940] . The z axis of eccentric dipole coordinates should parallel

that of dipole coordinates to assure the vanishing of the two off-axis

terms with n = 1 .

Unfortunately, a given expansion in geographic or dipole coordinates

(e.g. with 99 coefficients) is no longer accurately represented by the

same number of coefficients (or in general, by any finite number) once

the origin is shifted. In case of the 80-term IGRF 1965.0 model, Hilton

and Schulz [ 1973 have shown that a 195-term representation (n &_ 13)

of the field in offset dipole coordinates maintains sufficient accuracy

for practical purposes and have published its coefficients. It may

also be noted here that coordinates of the type discussed here seem to

be useful in describing Jupiter's main magnetic field, as observed

by the Pioneer 10 spacecraft Smith et al., 74] .

(f) PRACTICAL PROBLEMS RELATED TO UNIQUENESS

The practical derivation of y for the main geomagnetic field

involves ma-ny observational problems, such as the elimination from the

data of effects of external sources and of magnetic anomalies in the

earth's crust. Assuming these to be solved, the problem can be viewed

as involving the derivation of

7 = 0+ 1 (21)

where 70 is some previously known model of the potential and l is

a relatively small correction which is to be derived from the given data.

If Y7 is expanded as in (11) in spherical harmonics involving some

number N of unknown coefficients, then any observation related to the
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field can be reduced to a linear equation involving these coefficients.

The relation may be exact, e.g. when any component of B is observed, or

it may be a linearized approximation , as happens when one observes the

field's magnitude 1B (see later on) or any of the direction angles

defining B .

Thus the results of a world-wide magnetic survey tend to reduce to a

large set of linear equations in N unknowns. The coefficients of 7 are

then derived by the least squares procedure as those coming closest to

fitting the set and,in case approximate linearization was used in obtai-

ning the equations, y is generally added to 70 to give an improved

initial approximation, after which the procedure is repeated one or more

times [Cain et al., 1967 ]

An interesting problem related to such procedures is that of the

uniqueness of the result: how can one be sure that a given data set

leads to a unique choice of 7 ?

One case in which this question has led to unexpected results

involves the derivation of 7 from observations of IB (commonly

denoted in geomagnetism by F , a practice which will be followed here).

Such observations are easily performed aboard spacecraft with an accuracy

of about one gamma [Cain, 1971 and references cited there and they

have the advantage of not requiring precise knowledge of the attitude

of the sensor. If one neglects the altitude variation of the orbit, the

uniqueness problem reduces to the question whether 7 is uniquely

determined by observation of Iv 71 = F over the surface of a sphere.

Linearizing the expression of F obtained from (21) gives

V7Y 7 [F2 - (V7 0o2 (22)

and this can be used iteratively (as described before) to derive the

coefficients of 7 , with 7 added to 70 after each iteration step

to provide a better starting approximation for the step following. In
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computer simulations in which a known expansion (11) was used to generate

F this method recovered the input coefficients quite accurately within

4-5 steps. Consequently it was generally accepted and widely used in the

treatment of actual data.

Meanwhile, however, Backus i1968, 1970, 1974] investigated the problem

mathematically. He first found that F and 7 were uniquely related when-

ever the series (11) was finite fBackus, 1968 , then he showed by actual

counterexamples that this was no longer universally true if the series

(11) was infinite [Backus, 1970] and finally he proved that this ambi-

guity was removed if F was observed over a finite volume in space

Backus, L9L] .

At the same time evidence began to accumulate suggesting that models

derived from F observed in near-circular orbits fit the vector field

far less accurately than they fit the distribution of the field's magnitude.

In addition, different models derived from F exhibited relatively large

differences and this prompted Hurwitz and Knapp [1 1 to conduct simulated

recoveries similar to those described before but with data contaminated

by finite "noise", as occurs in practical situations. In such cases 7

is not recovered exactly but finite errors remain and Hurwitz and Knapp

found that the fit between the input vector field and that derived from

the output model was decidedly inferior to the fit between input F and

output F .

Stern and Bredekamp I[1 J independently obtained similar results and

also showed that such effects were connected to the counterexamples of

Backus F1970I . These counterexamples bear a special relation to the

dipole field and the fact that the main geomagnetic field is dominated by

its dipole component establishes a connection between them and the

problem. In particular, it turns out that in the presence of finite

"noise" certain sequences of harmonic terms can exhibit enhanced fluctu-

ations which degrade the fit to vector data much more than they degrade

the fit to F. Such enhanced fluctuations were in fact obtained in
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computer simulations and also in analysis of some of the runs of Hurwitz

and Knapp f 1974] and this strengthens the suspicion that some current

models based on F are in fact less accurate than has been claimed.

The uniqueness of y derived from some other types of data has

been examined by Kono 1 9 ] in order to evaluate the correctness of

some reconstructions of ancient geomagnetic fields. For instance, he

proved that magnetic declination observed at the earth's surface does not

in general define 7 uniquely.

(3) TOROIDAL AND POLOIDAL VECTORS

(a) INTRODUCTION

A general vector field V may be represented by three scalars # 0 ,
Sand y , in the form
1 2

V V 0 + Vx + V x x 42 r (23)

The advantage of this form is (as can be verified by carrying out the

algebra) that if V satidfies the vector Helmholtz equation

72 V  + k2 V = o (24)

then each of the Y. satisfies the appropriate scalar Helmholtz equation
1

2i + k2 4 i  = o (25)

(including the case k2 = 0 , when (25) becomes Laplace's equation). In a

similar way, if equation (24) is written in cartesian coordinates, it is

resolved into three scalar equations of form (25), one for each cartesian
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component of V ; this is useful if the boundary conditions are easily

expressed in cartesian coordinates, whereas (23) bears a similar relation

to spherical coordinates. Only a few systems of coordinates allow such

direct conversion of the vector equation to the corresponding scalar one

[ Senior, 960; Morse and Feshbach, 1953, chapt. 13]

Because (24) arises naturally in wave propagation problems, the repre-

sentation (23) was first introduced in that context [i ie, 1908 ; Hansen,

1935 . If a magnetic field B is represented in this manner, YO is

generally omitted, since it must then be a harmonic function and its

contribution (as will be shown) may be represented by part of Lm o The
2

representation using this form

B = V r V (26)

was first introduced in connection with geomagnetic dynamo theory by

Elsasser [1945, 1946, 1947, 1956] who called the two components the

toroidal and poloidal components of B , respectively.

These names are still used. To get some intuitive feeling for their

significance, consider axisymmetrical fields,in which neither L

nor '2 depends on the azimuth angle f . A toroidal field of this

type is then aligned with the P direction and has field lines

circling the z axis, while the field lines of a poloidal axisymmetric field

are orthogonal to the P direction and are confined to meridional planes.

as another axisymmetrical example, consider a poloidal field with field

lines covering the surfaces of a family of nested toruses. When a toroidal

component is added to this field, field lines acquire an azimuthal slant

so that instead of staying in planes of constant Y9 they spiral around

the axis of their torus, in a way resembling that found in toroidal

plasma confinement devices.

Some of the elementary applications of (26) to dynamo theory have

been described by Elsasser 1956] . For instance, in a conducting

sphere both components of (26) will tend to decay with time: differential
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rotation - such as is observed on the sun and Jupiter, both of which have

magnetic fields - will amplify the toroidal component, but the strength

of this process is proportional to the poloidal field which ultimately

decays, unless it is continuously maintained by some feedback imechanism

originating in the toroidal component. Parker [~5j showed that radial

flow in the rotating frame may induce cyclonic swirling which indeed

leads to such feedback. Various theories of solar magnetism based on

such considerations have been advanced [ Babcock, 1961; Leighton, 1969]

but the details are beyond the scope of this review.

(b) VECTOR POTENTIAL FOR A CURL-FREE FIELD

Two identities useful in handling (26) are

V X _r V'vx r (27)

2

S x~Y v r =V /ar (r W) - r v' (28)
2 2 - 2

If B is curl-free and satisfies (2) , with 7 expanded as in (11)

and (20), then it can be represented as a poloidal field with Y a
2

harmonic function simply related to y IStern, 1964] . To see that,

note that if Y 2 is.a series of spherical harmonics, the same holds

true for b/ar (r + 2 ) . Furthermore, the last term of (28) vanishes

in that case, so that only the gradient of a harmonic function remains.

This allows formal identification

S= - /r (ry ) (29)
2

and a term-by-term comparison of expansion coefficients. Specifically,

if 7 has expansion coefficients (gm, hn, n, h ) as in (11) and (20)

and 4 has corresponding coefficients (Gm , i? -, ) ,then
2 n n n n
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Gm =  g /n n = hm/n

(30)

m - /(n+) - /(n+l)
m n n

To obtain the vector potential A for a given y .expanded as in

(11) and (20), equations (30) are used to derive the expansion terms of

y , after which one calculates
2

A = Vx ( r (31)

(c) MODELS OF THE MAGNETOSPHERE

Curl-free models of the far-away geomagnetic field, as were described

in the section on the scalar potential, are incapable of great quantitative

accuracy, because the region which they describe contains an appreciable

current density. As an alternative, Mead and Fairfield [121; Fairfield

and Mead, 197] tried to represent the field in such regions by

expanding each component of B in powers of cartesian coordinates

r s n-r-s
Bi = x rs z (32)

n,r,s

Potential fields such as those of (20) are easily reduced to this

form but they comprise only a limited subclass of such fields.

Two problems, arise, however: the first is how to assure the vanishing

of *.B , and the second is the difficulty in controlling the model

near the boundary of the region for which it is derived, due to the pre

of positive powers of x , y and z .

To overcome the first difficulty Mead and Fairfield derived

the relations between the coefficients of (32) which are required in
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order for V-B to vanish. They then analyzed magnetometer data from

space and derived a "best fitting set" of coefficients for (32) by a

least-squares procedure similar to the one used for deriving the main

field, described in section (2-f) , but based on vector data. In that

calculation the relations which assure the vanishing of V .B were

introduced as constraints and were handled by the method of Lagrange's

multipliers.

A simpler method is however available: noting that

A Ar x + y + z z (33)

and expanding (26) in cartesian coordinates shows that if Y and

2I are expanded in the form (32), then the resulting components Bi

also have this form. In particular, if the largest power n of

variables having the dimension of length is N for jl and N-1

for 12 , then its value for the expansion of B i will be N.

Not all terms in the expansions of 9- i produce independent

contributions to B , because any part of 4)i which depends on

r alone does not affect -B . The terms with n = 0 belong to this

class and should therefore be omitted. Consider next the three quad-

ratic terms proportional to x2 , y and z . These can be combined

to give 3 independent terms proportional to x2 , y2  and r2  and

the last of these does not contribute to B, so that it can be omitted.

Similar arguments show that for any integer k , one coefficient can

be eliminated among those representing homogeneous polynomials of

degree , 2k in the expansion of 4) or V 2
1 2
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One advantage of this approach is that no precautions are required

to ensure the vanishing of V oB . It is also easily generalized to

overcome the second difficulty mentioned earlier, by devising models

in which l n and 2 are expanded in the form

. a. xmys n-m-s exp(-r/ro) (34)

n, m, s

where r0  is some chosen scale distance (in principle, several series

with different choices of ro could be used). It is more convenient

to use in this case spherical harmonics

7---1
= /. , rn exp(-r/ro) ps( ) [u. cos sf + v. sin sf

SO m ajnms jnms
n,m,s

(55)
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from which the components of B are readily derived. It should be noted

that the expansion of (34) is not equivalent to that of (35);-in fact,

the latter expansion is equivalent to

= rn ajnuvw (x/r)u(y/r)v(z/r)w exp(-r/r0)
n

which includes the terms of (34) if urv+w = n but also contains

additional expressions. Some comparisons between this method and that

of Mead and Fairfield have been performed (D. Stern, unpublished) ;

while the improvement is rather small compared to the inherent dispersion

of the observational data, this approach should be useful in future

studies by providing more flexible analytical expansions.

Magnetospheric models somewhat similar to those described here have

been used by Olson and Pfitzer [1974] . However, the derivation of

these models does not involve _Y. : it starts by fitting a system

of currents to observed fields [ Olson, 1974] and then approximates

the cartesian components of their fields by general expansions similar

to (32) and (34). The resulting models are not automatically divergence-

free.

It should be stressed that there exists no assurance that "global"

models, representing the entire magnetosphere by one series of analytic

functions of a given form, can do so with arbitrary accuracy. The power

series (32), for instance, is an ordinary Taylor expansion and can represent

functions only in a certain neighborhood of the origin, where it

converges: this region may not only be finite, it may be smaller than

the magnetosphere, in which case any representation of the field in

this way contains a finite error. The representation (34) appears at

first sight to be more useful but it,too, is subject to the same restrictions

since it just represents the cartesian expansion of )i exp(r/ro) .
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At present, observational inaccuracies are of the same order as those

introduced by global models and such models are therefore in general

use. Ultimately, however, it may be necessary to adopt a different

approach. Two extreme cases could then be considered - an extension

of the global method by which the magnetosphere is divided into a number

of large regions, each with its own expansion, and numerical represen-

tation by means of a tabulated network of values (e.g. of 'i. ). It

should be realized, however, that the numerical representation can also

be viewed as a local expansion, by means of the interpolation formulas

used, and by making the numerical grid more sparse and the interpolation

formula more powerful, the gap between these two extremes could in

principle be bridged.

(d) SPHERICAL VECTOR HARMONICS

The spherical harmonic functions pm( c) cos mY and Pm(0) sin m'h9n n
- or, alternatively

xm  p 0 e) e f (36)n n

(in the notation of Morse and Feshbach [ , p. 1898-1900, which

this section will adopt) - form a complete set in which arbitrary

analytic functions of ( e, ) can be expanded. Similarly, spherical

vector harmonics are 5 sets of vector functions of e and ' , denoted

as P , B and C , which find use in the expansion of vector-n,m -n,m -n, m
functions.

Many problems in wave propagation lead to a vector field V

represented as in (25) and satisfying (24) for some values of k

This gives 3 independent equations of the form (25) and separation

of the r variable shows then that Y i have the form

1 = A . F (r) Xm(e (37)
n,m
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where F (r) stands for Hankel functions if k / 0 and powers of rnm
if k = 0 . When (37) is then substituted in (23) it is found that all

terms are expressed as the product of functions of r with some member

of one of the following three families of spherical vector harmonics

P = r Xm(a, )
-nm - n

B = r [n(n+l) -1/2 VxG( ) (38)
-n'm n

C = n(n1) -1/2 V X r m(
-nm n

Note that any dimensional dependence on r in the above definitions

cancels out and also, by (27), that for any pair of values of the indices

n and m the three above vectors are orthogonal. Other features of

these vectors (and of their real and imaginary parts, since by (36) they

represent complex quantities) are described by Morse and Feshbach [1-,3]

May of the representation discussed earlier can be easily expressed

in terms of spherical vector harmonics. For instance, the expansion (35)

is formally the same as that of (37) and therefore the results of its

substitution in (26) can be expressed in terms of the vectors listed in

(38).
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(4) EULER POTENTIALS

(a) DEFINITION AND GENERAL PROPERTIES

An intuitive description of a magnetic field, first introduced by

Michael Faraday, is provided by magnetic field lines (or "lines of force"

as he termed them) - lines which are everywhere tangential to B . Such a

description is completely analogous to the representation of the velocity

field of an incompressible fluid by means of streamlines.

For a long time field lines were mainly used as a device for visualizing

the magnetic field. However, with increasing interest in particle motion

and transport properties in a near-collisionless plasma - both in space and

in the laboratory - field lines assumed new importance, since both these

effects are channeled along them. This created interest in mathematical

descriptions of the magnetic field which explicitely contain representation

by field lines; such a description has been available in fluid dynamics

and it involves two scalar functions o~ and such that

B = VQ x V (39)

The functions ( , 3 ) are generally known as Euler potentials

because it was Leonhard Euler who first introduced such a representation

in the context of fluid dynamics; they appear to have been introduced

into plasma physics by Grad [ Northrop and Teller, 1960; Gardner, 1_ .

A short review of their history and properties was given by Stern [1970]
and the reader is referred to that work for details extending beyond the

present brief description.

The basic properties of (o',P ) are easily derived from (39). We have

(ho)
B. VP =
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This means that surfaces of constant o( and are everywhere

tangential to B - and this property extends to lines along which two

of such surfaces intersect, which thus are field lines. Note that (39)

implies (40), but not vice versa. Two functions (u, v) with the property

of (40)

B. Vu = B. Vv = 0

do not satisfy (39) , in the general case, but rather

B = w (Vu x yv )

where w is an arbitrary function of (u, v). Functions such as (u, v)

may be called unmatched Euler potentials and have been introduced by

Sweet [9I01 and Dungey [1958 . They are conserved along field

lines and are therefore functions of ( o, P) .

In general (subject to restrictions of uniqueness and single valuedness

noted later) field lines of a given configuration form a two-parameter

family, in which the field line corresponding to the values (o40, 0)

of the parameters are represented by the intersection of the surfaces

(x, y, z ) = (41)

(x, z ) =

As an example, a simple model of the geomagnetic field is given by

an axial dipole of moment gO if (as in eq. 11) a represents the

earth's radius, one convenient choice of (o , 3) , in spherical

coordinates (r, 0 , f ) , is given by

= a gO (a/r) sin 2  (42-a)

S = a (42-b)
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Given any two numerical values (0o0 0 ) of 0 and P , a field line

of this field is defined by (41). Note that (42-b) indicates that field

lines lie in constant meridional planes, while (42-a) gives the shape

of a field line within such a plane. Other examples will be presented later.

Euler potentials are not uniquely defined: for instance, of can be

incremented by any function of without (59) being violated. More

generally, (d, ) may be replaced by (cC', ') , provided the new

Euler potentials are functions of the old ones and the Jacobian of the

transformation is unity:

Given a magnetic field represented as in (40), it is generally possible

to choose for o( ' (at least inside a restricted region in space) any

well-behaved function o('(~(, ) and then derive a corresponding

conjugate Euler potential ' . An application of this property will be

presented at the end of this section.

A vector potential corresponding to (39) is

A = o VP (44)

and it has the property A*B = 0 .

With all these useful properties, there exist two important drawbacks

to Euler potentials which limit their application. The first is non-linearity:

the representation (59) is non-linear, since it involves products of the

derivatives of c( and B . This means that superposition does not hold

for Euler potentials: given the Euler potentials for two fields B and
-- 1

B2 , the functions (o, ) for the combined field does not equal the

sum of the Euler potentials expressing B and B2  separately and, indeed,-1 -2

might be difficult to derive, even when the Euler potentials of the com-

ponent fields are known. In practice this greatly limits the class of

fields for which analytic forms or even analytic approximations of (o(,~)
are readily derived.
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The other drawback, more important in the laboratory than in space

applications, is the possibility that the labeling of field lines by

(0, P) is not single valued. In toroidal confinement devices, for

instance (tokamaks, stellarators), if a field line is labeled by (l, )

in some limited region of the field and is then followed outside this

region, it may ultimately enter the region once more. In fact, such a

field line usually returns to the same region again and again and with

each return it coincides with some previously labeled field line - in

general, one with different values of (o, f). In such cases the labeling

is single valued only if a limited region is considered and is not possible

when the entire field is represented. For further details about these and

other properties of Euler potentials the reader is referred to the review

by Stern 1970]

As an illustration of an application consider the motion of trapped

particles in the magnetosphere under the combined influence of a static

electric field

E = -9

and the geomagnetic field B . Because of the high conductivity along

field lines the electric field (except in some special regions, perhaps)

comes close to being orthogonal to B , ioe.

B-V = ()

By (40) this condition is neatly expressed by the requirement that 0

depends only on (o(,)

, = # (,P ) (4i6)

A charged particle of very low energy, conserving the two lowest

adiabatic invariants but with negligible magnetic drift, will move in

this field with the drift velocity

= ( X V¢O)/B2 (47)
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From this VEO -74 = 0 and therefore the particle stays on a single

equipotential surface throughout its motion.

Now as stated earlier, any "well-behaved" function 0o' of (V, )

can be chosen to replace :( and an appropriate "conjugate potential" '

can then be found for it. In particular, let the role of o(' be played

by 4 (, ) and let the conjugate potential be denoted (c,, ) ,

i.e.

B = VXVY (48)

It is instructive to derive the rate at which Y changes at the

location of the drifting particle. By (47) and (48)

dW/dt Zv V = 1 (49-a)
-E

i.e.

4 = t - t (49-b)

Thus a swarm of particles starting from a surface of constant ) at

t = 0 will always share the same value of Y . The averaged motion of

such particles - that is, the gradual change of their guiding field lines -

is conveniently studied in the (04,P ) plane, where to every pair of

values of the Euler potentials - and hence, to every possible guiding

field line - there corresponds one point (in the geomagnetic field the

equatorial plane can play such a role).In this plane the lines

S(o(, ) = constant

can be viewed as rays along which very low energy particles propagate,

while lines of constant / act as "wavefronts" marking the particles'

progress. Figure (1), taken from Stern [1924 ] gives lines of constant

(solid) and 4) (broken) for some particular geoinagnetic model, in
which the earth's field is approximated by a dipole field and some analy-

tical model of 0 is assumed.
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The preceding is readily extended to particles of finite energy

conserving the magnetic moment M and the second invariant J ,

except that now 0 is replaced by the averaged guiding center

hamiltonian K(, , , M, J) introduced by Northrop and Teller 1960

This generalization has been developed for the dipole field by Chen

and Stern [1975] , who provided an analytical approximation for K

and expressed its conjugate potential by means of numerical integration.

(b) EXAMPLES

In general, simple analytical forms for the Euler potentials can only

be found for classes of fields with some type of symmetry. For instance,

two-dimensional fields of the form

B = B (x, y) (5o)

have Euler potentials

= Ex dy + f(x) = - fB dx + g(y)

(51)

where the functions f(x) and g(y) are obtained by deriving oC in

two different ways (because V .B = 0 , two such equivalent derivations

are possible). The hamiltonian for a particle with mass m and charge q

moving in such a field can then be written

H = (1/2m) + p + ( p - q (x, y) ) 2 (52)

Since pz is a constant of the motion it follows that the motion

reduces to that of a two-dimensional free particle in a non-negative

potential

V = (z q o~ )2/ 2m (53)
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For all such motions, lines of constant o( in the (x, y) plane -

which trace the pattern of field lines - are equipotentials of V .

The value of V attached to any such line and the general configuration

of regions of high and low potential depends on the constant pz appro-

priate for the given motion. One interesting configuration of this class

occurs in the neighborhood of an X-type neutral line [Russbridge, 1971

other examples and generalizations have been examined by Stern 21975 .

Axisymmetrical poloidal fields, by (26), can be represented by Euler

potentials with =9 , since

A

x 'Vxrf(r,) = - T' E)
f2 2

= V[r sinO (a3/e)] x )V (54)

The dipole example of eqs. (42) belongs to this class. It is also

possible to derive simple Euler potentials for pure toroidal fields:

Vx4 1 r = V I X Vr (55)

However (as noted earlier) when fields of both kinds are combined

no simple waf of deriving Euler potentials exists.

A case of practical interest involves the main geomagnetic field,

usually represented by a scalar potential 7 as in eq. (11). No

analytical method is known by which (o(, ) may be simply derived

for such a field, but a perturbation technique is available for

obtaining them approximately.

The method is based on the observed property that the dipole

component g in (11) dominates the expansion, especially if 7

is expressed in dipole coordinates. In such coordinates let (0,' 0 )

be the dipole Euler potentials of eqs. (42) (the subscripts zero refer

here to zero-order approximations and are unrelated to those appearing
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in equations 41 ), while 70 is the corresponding scalar potential. Let

(( , P , y ) be the first-order corrections, linear in the higher
harmonic coefficients (gm, hm) , applied to these three quantities.

Substitution in (39) then gives

- = VVo x vX + p ,O o (56)

from which

V01 -V o  = ve o V

(57)

V Y-V70  = V71

Expressing ( o , , y ) in terms of (o40, P 0' ) allows these

equations to be integrated and provides (c , P ) within arbitrary

functions of (oC0, p 0). However, (57) contains only two of the three

scalar relations implied by the vector equation (56); if the remaining

scalar relation is now invoked, the arbitrary added function may be

determined. Details have been derived by Stern 1967 and related

expressions were first obtained in a different context by Pennington

[1961, 1967] . The calculation has not been extended to higher

order, except for one effort by Hassit [96] in which second-order

unmatched Euler potentials were derived.

The same perturbation method can also be applied to the external

harmonics of section (2-d) and in particular to the simple model

described there, with the expansion of y involving only the three

coefficients g 0 and 72 . As might be expected, the resulting
11 1

expansion breaks down at large distances, but it also becomes unrealis-

tic near the z axis. It provides a fairly good representation of the

field in the regions occupied by trapped particles; in the noon-

midnight cross section of the (0R, ) mode/n the region in which the

model field departs markedly from the curl-free field from which it

was derived, there exists the added feature (not found in the curl-free

model) of a neutral point on the night side of the dipole, in addition

to two such points on the day side, corresponding to the polar cusps.

Further details have been given by Stern [1967] and Kosik 1971a, b .
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A model with some similar properties (but fluch smaller deformation) has

been developed by Parker [1960

While accurate representations of the magnetospheric field by means of

(0(,P ) are difficult to obtain and no iterative procedures for deriving

them have been published, it is relatively easy to devise simple models

which exhibit appropriate qualitative properties. For instance, a distor-

ted dipole field, compressed on one side and stretched out on the other,

is given by

C(/a2g 0  = sin2 O / r - k sin6 e (1 - cosf)3

(58)

where k is an adjustable constant. It is easy to distort this model

further, in such a way that all its field lines are contained within

the surface

f(r,s,~) = 1 (59)

This is accomplished if O( is multiplied by ( 1 - f ) ; in order that

the field will continue to approximate the dipole near the origin, f should

tend to zero as r -, 0 . For instance, if the field is to be contained

inside the paraboloid

r = r 0 /(1 + sinOcos'P) (60-a)

one can multiply o( of (58) by the factor

1 - (r/r )m(It sin cosYf)m (60-b)

Increasing the adjustable parameter m narrows down the transition

zone between the main field and the boundary field. Further improvement can

be obtained by shifting the focus of the paraboloid away from the origin,

but it should be noted that in all these models the bounfary is always

connected to the two dipole field lines which emerge along the z axis.

As a final note, axisymmetric models of this sort have been construc-

ted by Barish et al. [19741 for the magnetic field of Jupiter, following

its observation by Pioneer 10 [ Smith et al., 1974 .
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(c) TEE L PARAMETER

Before the (, ) system for the magnetosphere was developed an

alternative approach to the labeling of magnetic field lines was

introduced in the form of the so-called L parameter due to McIlwain

[1961 19661

As an intuitively meaningful quantity the L parameter is extremely

useful: it has dimensions of length in units of earth radii and in a

dipole field its value at any given point equals the maximum distance

from the dipole attained by the field line passing the given point. In

a perturbed dipole field (and the parameter is only defined for dipole

fields and perturbed dipole fields) the value L(r) at some given

position r still approximately equals the largest distance from the

origin which is attained by the field line through r . However, the

generalization of L to perturbed dipole fields is not performed in a

way which aims at preserving the equatorial crossing distance. Instead,

the definition tries to preserve a different property, useful in studies

of trapped radiation - that if a charged particle is trapped along any

field line with a given value of L, as it gradually drifts around the

dipole then all field lines which it passes will have the same value of

L .

This property is only approximately achieved. Indeed, it cannot in

general hold for all particle orbits in an asymmetric field, since two

particles starting on a given field line in such a field with different

mirroring points will in general follow slightly different surfaces ("drift shells"

during their drift (this is known as shell splitting). However, for the

geomagnetic field the separation between such surfaces tends to be small

and consequently the values of L encountered by a particle in its drift

generally vary by less than 2 %o

In this section the relation between L and (o(, ) will be traced,

the inherent limitations of L will be clarified and suggestions will be

described for ways in which the concept can be generalized.
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In a static near-dipole magnetic field, trapped particles tend to

preserve the two lowest adiabatic invariants (the third invariant is not

needed here)

P = p/2mfB J = p d (61)

where m is the rest mass, (p , p ) are the components of the

momentum parallel and perpendicular to B and integration is along

a field line. Since the magnitude p of the momentum is also conserved

(in the absence of electric fields, which ill now be assumed) it is possible

in this case to replace ( p, J) by two related quantities (Bm, I) which

are also constants of the motion but do not depend on the particle's

energy:

Bm = p 2 /2mp.

(62)

I = J/2p = im (1 - B/Bm) 1 / 2 d-
B'

m

where the integration of I extends between mirror points at which

B = Bm . As the particle drifts from one guiding field line to the next,

it always chooses that one of the adjacent field lines on which the

value of I , evaluated between fixed values of B , is the same.

As the particle drifts its guiding field lines gradually trace a

surface - a closed surface for trapped particles - called a drift shell

or a drift surface. Because drift shells are tangential to B their

equations have the form

f(o, ) = constant (63)

For each pair of parameters (I, Bm there exists a drift shell and

therefore the entire collection of drift shells can be represented by

some function F as
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F(o, ,I ,Bm)= constant (64)

(the constant may be chosen as 0 or 1 without loss of generality).

Isolating cO gives

= G(I, Bm , ) (65)

In a dipole field ( may be eliminated because of axial symmetry; in

that case, if ( 0' C0) are the Euler potentials defined in (42), then

(65) reduces to

(0 = GO(I, Bm  (66)

Now (I, B ) can be replaced as parameters characterizing drift shells

by any two well-behaved functions depending on them [Stern, 19681 . In

particular, in the case of the perturbed dipole field, GO(I, Bm ) or any

function L(G O ) can be used as one such parameter, while Bm may be retained

as the second one. This characterization will have the advantage that in

the dipole limit - due to (66) - the shell equation depends only on a single

parameter GO  or L(GO ) not on two. In that limit all the trajectories

starting from the same initial field line trace the same surface and have

identical values of G or L(GO); by way of contrast, if such shells

were classified by using (I, Bm) , a finite range in both these parameters

would be required.

In a perturbed dipole field the shell equation is given by (66)

and no single-parameter description is possible. However, if the pertur-

bation is small, equation (65) will differ from (66) only by small

correction terms. Denoting such terms by subscript "1" and using (GO, Bm)

as parameters brings (65) to the form

o( = G + G (G o B (67)o ,Bl
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Thus the shell's equation depends strongly on GO and only weakly,

through the correction term G , on the second parameter B . If GI
Sm 

is ignored - or better, replaced by < G > , its average over Bm -
then all particles characterized by some value of GO will stay close

to the surface

O = G 0 + <G1( o , )> (68)

and thus their drift shell will still be approximately characterized by

the single parameter G . All the preceding also holds if G0 is

replaced by L(G0); in particular, McIlwain's definition of L McIlwain,

1961] is equivalent to

L(I, Bm) = a / GO(I, B) (69)

In McIlwain's work the above function is approximated in two steps,

beginning with the definition of auxiliary functions

Y In (L3B /g -1 )

(70)

X = where = Im ./go,

The relation between X and Y is then approximated by a polynomial

N

Y an Xn (71)
n=0

In the original derivation [Mcllwain, 1961 sixth-order polynomials

were used and different expansions were chosen for each of 5 ranges

of X . Later on [ McIlwain, 1966] an improved approximation was derived,

with N increased to 9 and the number of ranges to 6 , and an inverse

expansion, expressing X in terms of Y , was also provided. A much

simpler and fairly accurate approximation has been proposed by Hilton

[19711 , who matched the analytical behavior of L at the limits

I = 0 and B -- oO with that of the approximation. His result ism
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L Bm/ + a. 1/3 + a2  2/3 + a (72)

where

a = 3 (2)1/2/7 1.3507

a2  [2 + (3)1/21(2 + 51/2)]

- 0.0475455

a = 0.456376

The relative inaccuracy 4L/L of this approximation is 10-4 or less.

The L parameter is widely used in labeling field lines, in the

following manner. Given a point P = (x, y, z) in the earth's field

(which is assumed to be given by the expansion (11) of the scalar

potential) , the integral I is derived for particles mirroring at P ,

by numerical integration. Using one of the formulas described earlier,

L(I, B ) is derived for these particles and its value is regarded as

a labeling parameter for the field line passing P . Of course, what has

been derived here is an approximation to a gl/o((x, y, z) where OC is

the perturbed-dipole generalization of o< in (42-a) (in principle a g/o

could be chosen as a new Euler potential o ' , but the form of ' is

then complicated). The derivation of this approximation is encumbered by

the need for a numerical integration expressing I , although this

integration has been simplified - as far as computer use is

concerned - by G. Kluge (ESRO InternalNote 66, October 1970) who first

transformed it by inversion with respect to the origin.

This correspondence between L and o( works both ways and Stern

Lh has used approximations of O4 for perturbed dipole fields to

obtain approximations to L(I, Bm), avoiding the need for deriving I

by line integration. This method is already implicit in the work of

Pennington [ 1961, 1967  who derived the equations of drift shells in

a perturbed dipole field by a straightforward perturbation method.
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poloidal
The L parameter can be generalized to any near-axisymmetric magnetic

field : if (65) represents the family of drift shells in such a field, it

is only necessary to derive the corresponding equation (66) for the

underlying axisymmetric field and then choose GO or some function

of GO as the L parameter.

Such an approach was applied by Stern 1968] to the 3-parameter model

of the magnetosphere discussed in the preceding section. At moderate dis-

tances from the origin this field may be viewed as a perturbation of the

axisymmetrical field given by

B = - 7

(73)

S= a g 0(a/r) + go(r/a)2] cas9

By a perturbation method Stern derived an approximate form for the

equation corresponding to (66) in this field

( o=GO(I, B )00m

and denoted L' = a g0 /G' as the generalized L-parameter. In principle

the same generalization should be feasible for taking into account the

axisymmetrical ring current of the earth, for treatment of particle motion

in slightly asymmetrical mirror machines and for similar applications.

A number of quantities related to L are in general use. Among the

best known of these is the invariant latitude t : given a point with

some value of L , its "invariant latitude" satisfies

cos2 A = /L (74)

The underlying idea is that if all points in the perturbed field were

to be mapped to a dipole field in a way that L (or o( ) were conserved,

then A would be the latitude at which the field line through the point

met the earth's surface. A similar generalization for the longitude is

provided by the magnetic longitude [McIlwain, 1966
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(5) LOCAL REPRESENTATIONS

It is sometimes required to represent B in the immediate neighbor-

hood of some given point P without regard to the field's configuration

in the rest of space. Two important cases in which this happens are in

the guiding center motion of charged particles and in plasma dynamics

near neutral points: it is useful in such cases to introduce so-called

local representations of B which are valid only in a restricted

neighborhood of P .

The most common local representation - and the only one discussed

here - is the Taylor expansion

1
B(r) = B + r VB + rr:V B0 + o.. (75)-0 -0 2 - -0

where all quantities with subscript zero are evaluated at the point P

regarded as the origin for r . Such a representation is fully equivalent

to (32) and is best handled by the methods developed in section (3-c),

i.e. by expressing B in the form

B = Vx r' + V X r 'VV (76)
1 2

and expanding 4 and ) in polynomials in (x, y, z). Let 4)
1 2 i

denote the sum of those terms in the expansion of 4Yi which form

homogeneous polynomials of degree j in (x, y, z). Then it is easily

seen that

- (1)

r-VB = 'X V Arr (2) + ,x r (77)

1 (x)(2)
and so forth ith theV rderee of + terms on both sides incxr easin

and so forth, with the degree of the terms on both sides increasing
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by unity with each succeeding line. The coefficients on either side are not

in general independent. On the left side the terms are related by virtue

of the condition V.B = 0 ; for instance, VB 0  is required to have

zero trace, so that only 8 of its coefficients can be independently

specified. On the right any combination of terms which depends on r alone

does not contribute to the field and should be eliminated by the methods

of section (3-c). The vector potential follows at once from (77) ; it should

be noted that no simple relation exists between the expansion (75) of B

and a similar one for A .

In principle LMorse and Feshbach, 195_ an alternative local

expansion is possible in which r in (76) is replaced by the constant

unit vector z

B _ VX V X2V Z (78)

This, however, introduces a considerable ambiguity. In (76) no compo-

nent of B can be both poloidal and toroidal, so that the assignment of

such components to UV and 4 is never arbitrary. The analogous
1 2

statement does not hold for (78) and because of this, except perhaps for

special cases, this expansion is not recommended.

Local Euler potentials are similarly expressed as polynomials of ascen-

ding orders

(1) (2)

(79)

with

(1) (1)Bo = V (  X V(-O r (80)

n.. o  - vo(n) A vP (2) + i(2) 4 c )

and so forth. The calculation here is greatly simplified if the coordinate
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axes are suitably chosen, with the z axis along B0  and

(1) x (1)= Bo

If then

0( (2) = ax + a2 2y
2 + a3 3 z2 + (a' 2 - 2b2 )xy + a1 3xz + as23 z

(81)
(2) = b x2 + by t b z 2 

+ (b' - 2a )xy + blxz + byz

it is found that the 4 coefficients a l, a2 2 , b l and b22 affect

only orders higher than the first in (77), while the remaining 8

coefficients are uniquely related to the 8 independent terms which

determine VB 0 .

An interesting local representation, equivalent to (75) up to the

order of VB 0 , has been described by Siambis and Northrop [1966]

At a point P in the field let the unit vectors (L, M, N) form a

A

right-handed orthogonal system with the origin at P , L parallel

to B and M pointing towards the center of curvature of the field line

through P . In this system the components of V B 0 can be expressed

in terms of curvature and shear coefficients (loc. cit., appendix)

while the coefficients themselves can be expressed in terms of the spatial

variation of the basic unit vectors following a shift in P . Some

applications of such a system of local vectors exist in plasma theory,

e.g. in the work of Wilson [12970

The Taylor expansion (75) forms a focal point of the theory of neutral

points [Dungey, 5 19651 * A first-order neutral point exists at P

of B vanishes but V B does not, so that to lowest order, in the
0vicinity of P

vicinity of P



-44-

B = r.VB (82)-0

Even though B vanishes at P there may exist singular field lines

which pass through P and at sufficiently small distances from P such

field lines can then be approximated by straight lines. In the region of

interest the magnetic field B depends linearly on (x, y, z) as

measured from P and therefore, if is the radial distance measured

from P along one of the singular lines, its value on that line should

satisfy (to lowest order)

B = >_ (83)

where is some constant. By (82)

= B 0  (84)

and therefore must be a real eigenvalue of VBO . There may exist-o
either 1 or 3 such eigenvalues ; accordingly, there will exist 1

or 3 such singular field lines and P will be classified as an 0-type

or X-type neutral point, so named because field line configurations

near P resemble either the letter 0 or the letter X (Figure 2) .

A great amount of theoretical work and of interest has focused on

X-type neutral points, since they play a central role in processes

which change the topology of magnetic field lines; for a review the

reader is referred to the work of Vasyliunas [ 9] Surprisingly,

only limited experimental work exists on the subject [e.g. Baum et al.,

19731 , nor has there been much interest in magnetic field configurations

in space with O-type neutral points.
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AFTERWORD

This is a draft of a review article and additional relevant material

may be added to the final version. The author welcomes any suggestions

for such additions as well as comments of a general nature.

Two additions which will be incorporated concern the description

of two extraterrestrial magnetic fields by harmonic expansions similar

to eq. (11). Altschuler and Newkirk 1969] applied such an expansion

to the magnetic field of the sun and their work was extended by Schatten

S1971 ; Schatten and Howell, 1971] . In addition, Acuna and Ness

[1975 ] extracted a model of the external field of Jupiter from the

observations of Pioneer 11, which passed close enough to the planet to

allow the larger non-dipole harmonic terms to be estimated.

Another such addition concerns the work of Voigt 1972] , who

developed a general class of current-free magnetospheric models. In

Voigt's approach the bounding surface (i.e. magnetopause) is deduced

from observations and serves as a boundary condition to which an

expansion of 7 is then fitted.
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CAPTIONS TO FIGURES

Figure 1 - Lines of constant electrical potential ( , P) (solid)

and of constant conjugate potential Y (, ) (dashed) for

a dipole magnetic field in the equatorial plane, using a

simple analytical model of the earth's electric field.

Figures 2 - The behavior of magnetic field lines near an X-type (2-a)

and an O-type (2-b) neutral point. In Figure (2-b) the

pattern below the neutral point mirrors the one above it

and the main axes need not be orthogonal.
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